Waveform distortion for temperature compensation and synchronization in circadian rhythms: An approach based on the renormalization group method
Author summary Our daily rhythms are underlain by gene regulatory and biochemical networks, called circadian clocks. Although most biochemical reactions accelerate as temperature increases, the period of circadian rhythms is almost constant even with increasing temperature. This phenomenon is called temperature compensation, and the mechanism is still unclear. By applying a method of theoretical physics, the renormalization group method to a biological problem, we revealed that the waveform of gene dynamics should be more distorted from sinusoidal wave at higher temperature when the circadian period is stable to changes in temperature. This prediction as for the importance of waveform in temperature compensation is verified by analyzing published experimental data of Drosophila and mice. Notably, the correlation between period and waveform distortion holds for other oscillator models, indicating the waveform distortion is important for determining the period in various types of oscilla